Lecture 12

Geometry and Cameras

Administrative

A3 is out

- Due May 9th 12th

A4 out this weekend

A5 is half the length of other assignments

Administrative

Recitation

- Vivek Jayaram
- Multi-view geometry

So far: Segmentation and clustering

- Goal: identify groups of pixels that go together

So far: Agglomerative clustering

1. Say "Every point is its own cluster"
2. Find "most similar" pair of clusters
3. Merge it into a parent cluster
4. Repeat

So far: K-means clustering

So far: Mean-Shift Clustering

- Initialize multiple window at random locations
- All pixels that end up in the same location belong to the same cluster
- Attraction basin: the feature region for which all windows end up in the same location

Today's agenda

- How biological vision understands geometry
- Brief history of geometric vision
- Geometric transformations
- Pinhole camera
- The Pinhole camera transformation

Today's agenda

- How biological vision understands geometry
- Brief history of geometric vision
- Geometric transformations
- Pinhole camera
- The Pinhole camera transformation

Our goal: Recover the 3D geometry of the world

J. Vermeer, Music Lesson, 1662

Let's Take a Picture!

Single-view Ambiguity

- Given a camera and an image, we only know the ray corresponding to each pixel.
- We don't know how far away the object the ray was reflected from
- We don't have enough constraints to solve for X (depth)

Single-view Ambiguity

Single-view Ambiguity

Resolving Single-view Ambiguity

- Shoot light (lasers etc.) out of your eyes!
- Con: not so biologically plausible, dangerous?

Resolving Single-view Ambiguity

- Shoot light (lasers etc.) out of your eyes!
- Con: not so biologically plausible, dangerous?

How do humans estimate depth? Two eyes!

- Stereo: given 2 calibrated cameras in different views and correspondences, can solve for X

Stereo photography and stereo viewers

Take two pictures of the same subject from two slightly different viewpoints and display so that each eye sees only one of the images.

Invented by Sir Charles Wheatstone, 1838

Image from fisher-price.com

http://www.johnsonshawmuseum.org

http://www.well.com/~jimg/stereo/stereo_list.html

http://www.well.com/~jimg/stereo/stereo_list.html

Not all animals see stereo:

Prey animals are Stereoblind
(large field of view to spot predators)

Resolving Single-view Ambiguity

- One option: move the camera, find matching correspondences
- If you know how you moved in the physical world and have corresponding points in image space, you can solve for X

How do you estimate how much you moved in the physical world?

Can estimate using our eyes!
Can estimate using our ears!

- Our inner ears have 3 ducts
- Can estimate movement via signals sent to muscles

But even without moving, we can estimate depth from a single image. But how?

- You haven't been here before, yet you probably have a fairly good understanding of this scene.

We use pictorial cues - such as shading

a.)

b)

c)

We use pictorial cues - such as perspective effects

We use pictorial cues - such as familiar objects

Reality of 3D Perception

- 3D perception is absurdly complex and involves integration of many cues:
- Learned cues for 3D
- Stereo between eyes
- Stereo via motion
- Integration of known motion signals to muscles (efferent copy), acceleration sensed via ears
- Past experience of touching objects
- All connect: learned cues from 3D probably come from stereo/motion cues in large part

Regardless, illusions can still fool this complex system

Ames illusion persists (in a weaker form) even if you have stereo vision -guessing the texture is rectilinear is usually incredibly reliable

Today's agenda

- How biological vision understands geometry
- Brief history of geometric vision
- Geometric transformations
- Pinhole camera
- The Pinhole camera transformation

Simplified Image Formation

Geometric vision is an ill-posed inverse problem

Brief History of Geometric Vision

- 2020-: geometry + learning
- 2010s: deep learning
- 2000s: local detectors and descriptors
- 1990s: digital camera, 3D geometry estimation
- 1980s: epipolar geometry (stereo)

Brief History of Geometric Vision

- 1860s: Willème invented photo-scultures

Brief History of Geometric Vision

- 1860s: Willème invented photo-scultures
- 1850s: birth of photogrammetry [Laussedat]
- 1840s: panoramic photography

Puchberger 1843

1864

Brief History of Geometric Vision

- 1860s: Willème invented photo-scultures
- 1850s: birth of photogrammetry [Laussedat]
- 1840s: panoramic photography
- 1822-39: birth of photography [Niépce, Daguerre]
- 1773: general 3-point pose estimation [Lagrange]
- 1715: basic intrinsic calibration (pre-photography!) [Taylor]
- 1700's: topographic mapping from perspective drawings [Beautemps-Beaupré, Kappeler]

Brief History of Geometric Vision

- $15^{\text {th }}$ century: start of mathematical treatment of 3 D , first AR app?

Augmented reality invented by Filippo Brunelleschi (1377-1446)?
Tavoletta prospettica di Brunelleschi

Brief History of Geometric Vision

- $5^{\text {th }}$ century BC : principles of pinhole camera, a.k.a. camera obscura
- China: 5th century $B C$

O Greece: 4th century BC
O Egypt: 11th century
O Throughout Europe: from 11th century onwards

First mention

Chinese philosopher Mozi (470 to 390 BC)

First camera?

Greek philosopher Aristotle (384 to 322 BC)

Today's agenda

- How biological vision understands geometry
- Brief history of geometric vision
- Geometric transformations
- Pinhole camera
- The Pinhole camera transformation

Points

2D points: $\mathbf{x}=(x, y) \in \mathcal{R}^{2} \quad$ or column vector $\mathbf{x}=\left[\begin{array}{l}x \\ y\end{array}\right]$
3D points: $\mathbf{x}=(x, y, z) \in \mathcal{R}^{3}$ (often noted \mathbf{X} or \mathbf{P})

Homogeneous coordinates: append a 1

Why? $\overline{\mathbf{x}}=(x, y, 1)$

$$
\overline{\mathbf{x}}=(x, y, z, 1)
$$

Everything is easier in Projective Space
2D Lines:
Representation: $l=(a, b, c)$
Equation: $a x+b y+c=0$
In homogeneous coordinates: $\bar{x}^{T} l=0$
General idea: homogenous coordinates unlock the full power of linear algebra!

Homogeneous coordinates in 2D

2D Projective $\operatorname{Spac\epsilon } \mathcal{P}^{2}=\mathcal{R}^{3}-(0,0,0) \quad$ (same story in 3 D witt \mathcal{P}^{3})

- heterogeneous \rightarrow homogeneous

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y
\end{array}\right] \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]} \\
& {\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right] \Rightarrow\left[\begin{array}{l}
x / w \\
y / w
\end{array}\right]}
\end{aligned}
$$

- points differing only by scale are equivalent: $(x, y, w) \sim \lambda(x, y, w)$

$$
\tilde{\mathbf{x}}=(\tilde{x}, \tilde{y}, \tilde{w})=\tilde{w}(x, y, 1)=\tilde{w} \overline{\mathbf{x}}
$$

The camera as a coordinate transformation

A camera is a mapping
from: the 3D world
to: a 2D image

Cameras and objects can move!

2D Transformations in pixel locations (not pixel values)

Scaling

$$
\underset{\mathrm{A}}{\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]} \times \underset{\mathrm{p}}{\left[\begin{array}{l}
x \\
y
\end{array}\right]}=\underset{\mathrm{p}^{\prime}}{\left[\begin{array}{c}
s_{x} x \\
s_{y} y
\end{array}\right]}
$$

Rotation

2D Translation

$$
\begin{aligned}
& x^{\prime}=x+t_{x} \\
& y^{\prime}=y+t_{y}
\end{aligned}
$$

As a matrix?

Transformation = Matrix Multiplication

Scale	
$\mathbf{M}=\left[\begin{array}{cc}s_{x} & 0 \\ 0 & s_{y}\end{array}\right]$	Flip across \mathbf{y} $\mathbf{M}=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$ $\mathbf{M}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$Flip across origin $\mathbf{M}=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$ $\mathbf{M}=\left[\begin{array}{cc}1 & s_{x} \\ s_{y} & 1\end{array}\right]$$\quad$Identity $\mathbf{M}=\left[\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right]$

2D Translation with homogeneous coordinates

$$
p^{\prime} \rightarrow\left[\begin{array}{c}
x+t_{x} \\
y+t_{y} \\
1
\end{array}\right]=\left[\begin{array}{llc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{ll}
\boldsymbol{I} & \boldsymbol{t} \\
\mathbf{0} & 1
\end{array}\right] p=T p
$$

Euclidean transformations: rotation + translation

How many degrees of freedom?

Similarity $=$ Euclidean + scaling equally in x and y

$$
\begin{array}{r}
\text { Similarity: } \\
\text { Scaling } \\
\text { + rotation }
\end{array}\left[\begin{array}{ccc}
a & -b & t_{x} \\
b & a & t_{y} \\
0 & 0 & 1
\end{array}\right]
$$

2D Transformations with homogeneous coordinates

Shear in x direction
$\left[\begin{array}{ccc}1 & \tan \phi & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Scale about origin
$\left[\begin{array}{ccc}W & 0 & 0 \\ 0 & H & 0 \\ 0 & 0 & 1\end{array}\right]$

Shear in y direction

Figure: Wikipedia

Affine transformation = similarity + no restrictions on scaling

Properties of affine transformations:

- arbitrary 6 Degrees Of Freedom
- lines map to lines

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

- parallel lines map to parallel lines
- ratios are preserved

Projective transformation (homography)

Properties of projective transformations:

- 8 degrees of freedom
- lines map to lines

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

- parallel lines do not necessarily map to parallel lines
- ratios are not necessarily preserved

Composing Transformations

Transformations $=$ Matrices $=>$ Composition by Multiplication!

$$
p^{\prime}=R_{2} R_{1} S p
$$

In the example above, the result is equivalent to

$$
p^{\prime}=R_{2}\left(R_{1}(S p)\right)
$$

Equivalent to multiply the matrices into single transformation matrix:

$$
p^{\prime}=\left(R_{2} R_{1} S\right) p
$$

Order Matters! Transformations from right to left.

Scaling \& Translating != Translating \& Scaling

$$
\stackrel{\bullet}{p^{\prime \prime}}=T S p=\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{ccc}
s_{x} & 0 & t_{x} \\
0 & s_{y} & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
s_{x} x+t_{x} \\
s_{y} y+t_{y} \\
1
\end{array}\right]
$$

$$
p^{\prime \prime \prime}=S T p=\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{ccc}
s_{x} & 0 & s_{x} t_{x} \\
0 & s_{y} & s_{y} t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
s_{x} x+s_{x} t_{x} \\
s_{y} y+s_{y} t_{y} \\
1
\end{array}\right]
$$

Scaling + Rotation + Translation

$$
\begin{gathered}
\mathrm{p}^{\prime}=(\mathrm{T} \mathrm{R} \mathrm{~S}) \mathrm{p} \\
p^{\prime}=T R S p=\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & t_{x} \\
\sin \theta & \cos \theta & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
=\left[\begin{array}{ll}
R & t \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
S & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{cc}
R S & t \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \quad \begin{array}{l}
\begin{array}{l}
\text { This is the form of the } \\
\text { general-purpose } \\
\text { transformation matrix }
\end{array}
\end{array}
\end{gathered}
$$

3D Transforms = Matrix Multiplication

Transformation	Matrix	\# DoF	Preserves	Icon
translation	$\left[\begin{array}{ll}\mathbf{I} & \mathbf{t}]_{3 \times 4}\end{array}\right.$	3	orientation	
rigid (Euclidean)	$\left[\begin{array}{ll}\mathbf{R} & \mathbf{t}\end{array}\right]_{3 \times 4}$	6	lengths	
similarity	$[s \mathbf{R}$	$\mathbf{t}]_{3 \times 4}$	7	angles
affine	$[\mathbf{A}]_{3 \times 4}$	12	parallelism	
projective	$[\tilde{\mathbf{H}}]_{4 \times 4}$	15	straight lines	

Table 2.2 Hierarchy of $3 D$ coordinate transformations. Each transformation also preserves the properties listed in the rows below it, i.e., similarity preserves not only angles but also parallelism and straight lines. The 3×4 matrices are extended with a fourth $\left[\mathbf{0}^{T} 1\right]$ row to form a full 4×4 matrix for homogeneous coordinate transformations. The mnemonic icons are drawn in $2 D$ but are meant to suggest transformations occurring in a full $3 D$ cube.

Today's agenda

- How biological vision understands geometry
- Brief history of geometric vision
- Geometric transformations
- Pinhole camera
- The Pinhole camera transformation

Reminder: Camera Obscura

- $5^{\text {th }}$ century BC : principles of pinhole camera, a.k.a. camera obscura

O China: 5th century BC
O Greece: 4th century BC
O Egypt: 11th century
O Throughout Europe: from 11th century onwards

First mention

Chinese philosopher Mozi (470 to 390 BC)

First camera?

Greek philosopher Aristotle (384 to 322 BC)

Pinhole imaging

Pinhole imaging

 image on the sensor look like?

Pinhole imaging

Bare-sensor imaging (without a pinhole camera)

 sensor look like?

Bare-sensor imaging (without a pinhole camera)

\square
All scene points contribute to all sensor pixels

Cameras \& Lenses

- Focal length determines the magnification of the image projected onto the image plane.
- Aperture determines the light intensity of that image pixels.

What's going on there?

The buildings look distorted and bending towards each other.

Beyond Pinholes: Radial Distortion

- Common in wide-angle lenses or for special applications (e.g., automotive)
- Creates a projective transformation
- Usually handled through solving for non-linear terms and then correcting image

No Distortion

Barrel Distortion

Pincushion Distortion

Corrected Barrel Distortion

Cameras \& Lenses

> Decreasing aperture size

What happens with a smaller aperture?

- Less light passes through
- Less diffraction effect and clearer image

Pinhole is the miniscule aperture, resulting in the least amount of light and clearest image

Today's agenda

- How biological vision understands geometry
- Brief history of geometric vision
- Geometric transformations
- Pinhole camera
- The Pinhole camera transformation

Describing both lens and pinhole cameras

For this course, we focus on the pinhole model.

- Similar to thin lens model in

Physics: central rays are not deviated.

- Assumes lens camera in focus.
- Useful approximation but ignores important lens distortions.

The pinhole camera

image plane

The (rearranged) pinhole camera

virtual image plane

real-world object

The (rearranged) pinhole camera

What is the transformation $\mathbf{x}=\mathbf{P X}$?

Pinhole Camera Matrix

Because all transformations are done using homogeneous coordinate system, all transformations

$" X=P X "$

 are correct up to some scale lambda$$
\left[\begin{array}{l}
x^{\prime} \\
\mathcal{Y} \\
Z
\end{array}\right] \sim\left[\begin{array}{cccc}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

image coordinates
camera matrix world (camera) coordinates

$$
3 \times 4 \quad 4 \times 1
$$

2D view of the (rearranged) pinhole camera

Pinhole Camera Matrix

Transformation from camera coordinates to image coordinates:

$$
\left[\begin{array}{lll}
X & Y & Z
\end{array}\right]^{\top} \mapsto\left[\begin{array}{ll}
f X / Z & f Y / Z
\end{array}\right]^{\top}
$$

General camera model in homogeneous coordinates:

$$
\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{y} \\
\boldsymbol{Z}
\end{array}\right] \sim\left[\begin{array}{cccc}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

Pinhole camera has a much simpler projection matrix (assume only scaling):

$$
\mathbf{P}=\left[\begin{array}{llll}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \quad\left[\begin{array}{c}
f X \\
f Y \\
Z
\end{array}\right] \rightarrow\left[\begin{array}{c}
f X / Z \\
f Y / Z
\end{array}\right] \begin{aligned}
& \text { Reminder: conversion from } \\
& \text { homogeneous coordinates }
\end{aligned}
$$

Generalizing the camera matrix

In general, the camera and image have different coordinate systems.

Generalizing the camera matrix

In particular, the camera origin and image origin may be different:

Q. How does the camera matrix change?

$$
\mathbf{P}=\left[\begin{array}{llll}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Generalizing the camera matrix

In particular, the camera origin and image origin may be different:

Q. How does the camera matrix change?

$$
\mathbf{P}=\left[\begin{array}{cccc}
f & 0 & p_{x} & 0 \\
0 & f & p_{y} & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \begin{aligned}
& \text { Translate the } \\
& \text { camera origin to } \\
& \text { image origin }
\end{aligned}
$$

Camera matrix decomposition

We can decompose the camera matrix like this:

$$
\begin{gathered}
\mathbf{P}=\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll:l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \\
\mathbf{P}=\left[\begin{array}{cccc}
f & 0 & p_{x} & 0 \\
0 & f & p_{y} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
\end{gathered}
$$

Camera matrix decomposition

We can decompose the camera matrix like this:

$$
\mathbf{P}=\left[\begin{array}{llc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll:l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

(homogeneous) transformation from 2D to 2D, accounting for focal length f and origin translation
(homogeneous) perspective projection from 3D to 2D, assuming image plane at $\mathrm{z}=1$ and shared camera/image origin

Camera matrix decomposition

We can decompose the camera matrix like this:

$$
\mathbf{P}=\left[\begin{array}{llc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll:l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

(homogeneous) transformation from 2D to 2D, accounting for focal length f and origin translation
(homogeneous) perspective projection from 3D to 2D, assuming image plane at $z=1$ and shared camera/image origin

Also written as: $\mathbf{P}=\mathbf{K}[\mathbf{I} \mid \mathbf{0}]$ where $\mathbf{K}=\left[\begin{array}{ccc}f & 0 & p_{x} \\ 0 & f & p_{y} \\ 0 & 0 & 1\end{array}\right] \begin{aligned} & \mathrm{K} \text { is called the } \\ & \text { camera intrinsics }\end{aligned}$

Generalizing the camera matrix

In general, there are 3 different coordinate systems (camera moves in the world).

World-to-camera coordinate transformation

Let's assume camera is at location \mathbf{C}^{W} in world coordinate system Q. What is \mathbf{X}^{W} in camera coordinate system?

World-to-camera coordinate transformation

World-to-camera coordinate transformation

$$
\mathbf{R}\left(\mathbf{X}^{\mathrm{W}}-\mathbf{C}^{\mathrm{W}}\right)
$$

rotate translate

Coordinate system transformation

In heterogeneous coordinates, we have:

$$
\mathbf{X}^{\mathrm{C}}=\mathbf{R}\left(\mathbf{X}^{\mathrm{W}}-\mathbf{C}^{\mathbb{W}}\right)
$$

Q. How do we write this transformation in homogeneous coordinates?

Coordinate system transformation

In heterogeneous coordinates, we have:

$$
\mathbf{X}^{\mathrm{C}}=\mathbf{R}\left(\mathbf{X}^{\mathbb{W}}-\mathbf{C}^{\mathbb{W}}\right)
$$

Q. How do we write this transformation in homogeneous coordinates?

$$
\left[\begin{array}{c}
X_{c} \\
Y_{c} \\
Z_{c} \\
1
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{R} & -\mathbf{R C} \\
\mathbf{0} & 1
\end{array}\right]\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right] \quad \text { or } \quad \widetilde{\mathbf{X}}^{\mathbf{C}}=\left[\begin{array}{cc}
\mathbf{R} & -\mathbf{R} \mathbf{C}^{\mathrm{W}} \\
\mathbf{0} & 1
\end{array}\right] \widetilde{\mathbf{X}}^{\mathrm{W}}
$$

Let's update our camera transformation

The previous camera transformation we calculated is for homogeneous 3D coordinates in camera coordinate system:
(omitting ~ for simplicity: everything in homogeneous coordinates)

$$
\mathbf{x}^{\mathbf{I}} \sim \mathbf{K}[\mathbf{I} \mid \mathbf{0}] \mathbf{X}^{\mathrm{C}}
$$

We also just derived:

$$
\mathbf{X}^{\mathrm{C}}=\left[\begin{array}{cc}
\mathbf{R} & -\mathbf{R C} \\
\mathbf{0} & 1
\end{array}\right] \mathbf{X}^{\mathrm{W}}
$$

Putting it all together

We can write everything into a single projection: $\mathbf{x}^{I I} \sim \mathbf{K}[\mathbf{I} \mid \mathbf{0}]\left[\begin{array}{cc}\mathbf{R} & -\mathbf{R C} \\ \mathbf{0} & 1\end{array}\right] \mathbf{X}^{W}=\mathbf{P X}^{W}$

The camera matrix now looks like:

Putting it all together

We can write everything into a single projection: $\quad \mathbf{x}^{\text {II }} \sim \mathbf{P} \mathbf{X}^{\text {W }}$

The camera matrix now looks like:

$$
\left.\mathbf{P}=\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right] \begin{array}{c:c}
\mathbf{t} \\
\mathbf{R} & -\mathbf{R C}
\end{array}\right]
$$

 correspond to camera internals (sensor not at $\mathrm{f}=1$ and origin shift)

General pinhole camera matrix
 $\mathbf{P}=\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \quad$ where $\quad \mathbf{t}=-\mathbf{R C}$

General pinhole camera matrix
$\mathbf{P}=\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \quad$ where $\quad \mathbf{t}=-\mathbf{R C}$

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll:l}
r_{1} & r_{2} & r_{3} & t_{1} \\
r_{4} & r_{5} & r_{6} & t_{2} \\
r_{7} & r_{8} & r_{9} & t_{3}
\end{array}\right] \\
& \text { intrinsic extrinsic } \\
& \text { parameters parameters }
\end{aligned}
$$

$$
\begin{gathered}
\mathbf{R}=\left[\begin{array}{lll}
r_{1} & r_{2} & r_{3} \\
r_{4} & r_{5} & r_{6} \\
r_{7} & r_{8} & r_{9}
\end{array}\right] \\
\text { 3D rotation }
\end{gathered} \quad \mathbf{t}=\left[\begin{array}{c}
t_{1} \\
t_{2} \\
t_{3}
\end{array}\right]
$$

More general camera matrices

Non-square pixels, sensor may be skewed (causing focal length to be different along x and y).

$$
\mathbf{P}=\left[\begin{array}{ccc}
\alpha_{x} & s & p_{x} \\
0 & \alpha_{y} & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l:l}
\mathbf{R} & -\mathbf{R C}]
\end{array}\right.
$$

Q. How many degrees of freedom?

Many other types of cameras

(d) para-perspective

Camera Models: Still an Active Area

Is everybody only using a 2400 years old model?

- More complex cameras: pinhole + distortion, fisheye catadioptric, dashcams, underwater...

- The Double Sphere Camera Model, Usenko et al ECCV 2018 (commonly used in robotics, like in our ICRA'22 paper)
- Learning Camera Models Neural Ray Surfaces, Vasiljevic et al, 3DV 2020

Next time

Camera calibration

