Lecture 12

Geometry and Cameras

Ranjay Krishna, Jieyu Zhang Lecture 12 - May 2, 2024



Administrative

A3 is out
- Due May 9tk 12th

A4 out this weekend

A5 is half the length of other assignments
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Administrative

Recitation

- Vivek Jayaram
- Multi-view geometry
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So far: Segmentation and clustering

e Goal: identify groups of pixels that go together
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So far: Agglomerative clustering

1. Say “Every point is its

. e N own cluster”
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So far: K-means clustering

0 — o ¢
o - a o o ;

e eoem o | & 9 O =

e o o

®°8a"” g a E!I- g\; .

1. Initialize 2. Assign‘ Points to 3. Re-compute | Repeat (2) and (3)
Cluster Centers Clusters Means

lllustration Source: wikipedia
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http://en.wikipedia.org/wiki/Image:K_Means_Example_Step_1.svg
http://en.wikipedia.org/wiki/Image:K_Means_Example_Step_2.svg
http://en.wikipedia.org/wiki/Image:K_Means_Example_Step_3.svg
http://en.wikipedia.org/wiki/Image:K_Means_Example_Step_4.svg

So far: Mean-Shift Clustering

e Initialize multiple window at random locations
e All pixels that end up in the same location belong to the same cluster

e Attraction basin: the feature region for which all windows end up in the
same location
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Today's agenda

How biological vision understands geometry
Brief history of geometric vision

Geometric transformations

Pinhole camera

The Pinhole camera transformation
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Today's agenda

e How biological vision understands geometry
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Our goal: Recover the 3D geometry of the world

J. Vermeer, Music Lesson, 1662

A. Criminisi, M. Kemp, and A. Zisserman,Bringing Pictorial Space to Life: computer techniques for the analysis of paintings, Proc. Computers and the History of Art, 2002

Ranjay Krishna, Jieyu Zhang Lecture 12 - 10 May 2, 2024


http://research.microsoft.com/apps/pubs/default.aspx?id=67260

Let's Take a Picture!

Photosensitive Material
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Single-view Ambiguity

X?

o

A

« Given a camera and an image, we only know the ray corresponding to each
pixel.

« We don’t know how far away the object the ray was reflected from
o We don’t have enough constraints to solve for X (depth)
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Single-view Ambiguity

'f"‘\

Actual position of
Person A —_ ||

Apparent position|| | —®h
of person A Actual and
apparent position

of person B

B
o

Apparent / .'\%vg

shape of room peephole

http://en.wikipedia.ora/wiki/Ames room
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http://en.wikipedia.org/wiki/Ames_room

Single-view Ambiguity
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Resolving Single-view Ambiguity

« Shoot light (lasers etc.) out of your eyes!
« Con: not so biologically plausible, dangerous?
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Resolving Single-view Ambiguity

« Shoot light (lasers etc.) out of your eyes!
« Con: not so biologically plausible, dangerous?
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How do humans estimate depth”? Two eyes!

.

e L
\

« Stereo: given 2 calibrated cameras in different views and
correspondences, can solve for X
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Stereo photography and stereo viewers

Take two pictures of the same subject from two slightly different viewpoints and display so
that each eye sees only one of the images.

’.0“\-‘"' o
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http://www.well.com/~jimg/stereo/stereo_list.html
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Not all animals see stereo:

Prey animals are Stereoblind
(large field of view to spot predators)

www.MzePhotos.com
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Resolving Single-view Ambiguity

A

[ Rt | -
* One option: move the camera, find matching correspondences

 If you know how you moved in the physical world and have
corresponding points in image space, you can solve for X

Ranjay Krishna, Jieyu Zhang Lecture 12 - 23 May 2, 2024



low do you estimate how much you moved in the physical
world?

Can estimate using our eyes!
Can estimate using our ears!

Semicircular ducts

Anterior/
Lateral

Vestibulocochlear

* Our inner ears have 3 ducts rosterior—____\
« Can estimate movement via signals sent -

to muscles < WY
Vestibular duct % ‘
Cochlear duct -!'—,( g A
Tympanic duct :
l:l Bony labyrinth ‘\Q@T, ‘

. Cochlea
: Membranous labyrinth
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But even without moving, we can estimate depth from a
single image. But how?

e You haven't been here before, yet you probably have a fairly good
understanding of this scene.
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We use pictorial cues — such as shading
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We use pictorial cues — such as perspective effects

| \ —
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We use pictorial cues — such as familiar objects

[T Monitor: probably not
112 feet wide.

L

2!’4

Desk surface:
probably flat
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Reality of 3D Perception

® 3D perception is absurdly complex and involves integration of many cues:
o Learned cues for 3D
o Stereo between eyes
o Stereo via motion

o Integration of known motion signals to muscles (efferent copy),
acceleration sensed via ears

o Past experience of touching objects

® All connect: learned cues from 3D probably come from stereo/motion cues
in large part

Really fantastic article on cues for 3D from Cutting and Vishton, 1995: https://pmvish.people.wm.edu/cutting%26vishton1995.pdf
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https://pmvish.people.wm.edu/cutting%26vishton1995.pdf

Regardless, illusions can still fool this complex system

Ames illusion persists (in a weaker form) even if you have stereo
vision —guessing the texture is rectilinear is usually incredibly
reliable

Apparent position /@\ """"""

of person A oo Actual and
N apparent position
| L of person B
A
'
1

71! ‘
S
/:!'F\)sa e(?ftro m E’Ng
P peephole

Gehringer and Engel, Journal of Experimental Psychology: Human Perception and Performance, 1986

Ranjay Krishna, Jieyu Zhang Lecture 12 - 30 May 2, 2024



Today's agenda

e Brief history of geometric vision
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Simplified Image Formation

light {:%

SOurce
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Geometric vision is an ill-posed inverse problem

2D Image 3D Scene

Graphics
“r"‘—————— ““~._-~‘

~— 2

Vision
Pixel Matrix Objects Material
217 191 252 255 239
15 o4 81 121 13 Shape/Geometry  Motion
179 106 136 85 41
115 129 83 112 67 .
% 114 105 111 89 Semantics 3D Pose
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Brief History of Geometric Vision

e 2020-: geometry + learning

e 2010s: deep learning

e 2000s: local detectors and descriptors

e 1990s: digital camera, 3D geometry estimation
e 1980s: epipolar geometry (stereo)
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Brief History of Geometric Vision

e 1860s: Willeme invented photo-scultures

¢ E. Morin and E. Rovins, pantographic studio (from Le
onde illustré, December 17, 1864)
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Brief History of Geometric Vision

R '.‘ﬂ‘ummmam;mﬂmn?rvwre
7T
ulaﬂy/ s »,Ja«';z_»

Puchberger 1843

\

e 1860s: Willeme invented photo-scultures
e 1850s: birth of photogrammetry [Laussedat]

\

\

e 1840s: panoramic photography

Cylindrograph
Moéssard 1884

“Cloud camera’,
1907
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Brief History of Geometric Vision

1860s: Willeme invented photo-scultures

1850s: birth of photogrammetry [Laussedat]
1840s: panoramic photography

1822-39: birth of photography [Niépce, Daguerre]
1773: general 3-point pose estimation [Lagrange]
1715: basic intrinsic calibration (pre-photography!)

[Beautemps-Beaupré, Kappeler]

Niépce, “La Table Servie”, 1822

‘Taylor]

1700’s: topographic mapping from perspective drawings
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Brief History of Geometric Vision

¢ 151" century: start of mathematical treatment of 3D, first AR app?

Augmented reality invented by Filippo Brunelleschi (1377-1446)7?
Tavoletta prospettica di Brunelleschi
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https://www.youtube.com/watch?v=G2BCdA23Kpg

Brief History of Geometric Vision

e 5" century BC: principles of pinhole camera, a.k.a. camera obscura

China: 5th century BC
Greece: 4th century BC

Egypt: 11th century

O O O O

Throughout Europe: from 11th century onwards

First mention ... First camera?

Solis Jé@u[m Aano C@risélj‘&j-_’

Die¢ 24 gfmum;i/‘ Lopaniy
- &0 ",
= %, R

Chinese philosopher Mozi

Greek philosopher Aristotle
(470 to 390 B(C)

(384 to 322 BC)
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Today's agenda

e (Geometric transformations
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Points

2D points: X = (x,¥) € R?  or column vector X =

Y
3D points: x = (x,y,2) € R* (often noted X or P)
Homogeneous coordinates: append a 1
why? X = (x,y, 1) % = (29,2, 1)
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Everything is easier in Projective Space

®D Lines:
Representation: [ = (a, b, c¢)
Equation: ax+by+c=0
In homogeneous coordinates: %'l =0

General 1dea: homogenous coordinates
unlock the full power of linear algebral
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Homogeneous coordinates in 2D

2D Projective SpaceP? = R> — (0,0,0)  (same story in 3D wittP? )

T

T
* heterogeneous - homogeneous [ }=> Y
1

Y
B T /w
 homogeneous - heterogeneous y | = [ y/w }
w

* points differing only by scale are equivalent: (x,y,w)~ A (x,y,w)

% = (z,9,0) = w(z,y,1) = 0%
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The camera as a coordinate transformation

A camera is a mapping

3D object -
from: the 3D world 3D to 2D transform

\ (camera)
to: a 2D image
B — g

—

2D to 2D transform
(image filters)

2D image 2D image
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Cameras and objects can move!

p=XYZ]1)

E:\ (x1,y1, 1,dy)
\

I") ~
'S ‘\* .
/"' ~ \‘
/ o .

(X010, 1,d0) \
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2D Transformations in pixel locations
(not pixel values)

I
y‘ / 31m11ar1ty projective — |
translation
P 4
\
Euchdean afﬁne >
o X
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Scaling

S, 0 " r| |8z
0 sy 1 SyY
A p p’
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Rotation

Y ' =z cosh —ysinh
A y = zsinf +ycosb
or in matrix form:
/
)| T
T = { Y ] z/ | | cos§ —sinb T
- y | | sinf cos#f Yy
A
' rotation around Rotation matrix: o
the origin * Inverse is transpose R-R"=R"-R=1
. i
\ e T = [ y ] Orthonormal det(R) =1
SUNRRES
-" >
b
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2D Translation

. P X' =x+ty

A . 1 I __

AV V=Y Tl
S As a matrix?
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Transformation = Matrix Multiplication

Ranjay Krishna, Jieyu Zhang

Scale Flip across y
Se 0 |1 -1 0
M- 1T M-l
Rotate Flip across origin
cosf) —sinf -1 0
M_[sinl? cos 0 ] M_[ 0 —1]
Shear Identity
1 s, |10
el T M=o 7

Lecture 12 -
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2D Translation with homogeneous coordinates

xp [V
____________________________ o P = y] >
t i ]
ool P4
_t_
y ;= tx]_) tx
= | ,
X ¢ , Y L1 -
p =Tp
r4+t,] 1 0 &, [z I
p—=ly+t, | =10 1 & [y]| = p=Tp
1| o0 1]]|1 01]
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Euclidean transformations: rotation + translation

Euclidean (rigid): _ _
rotation + translation cosfh -sin@ tx
SE(2): Special Euclidean group sinf cos ¢ Ly
Important in robotics: 0 0 1
describes poses on plane - -

How many degrees of freedom?

oA
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Similarity = Euclidean + scaling equally in x and y

Similarity: a —b t;,;
Scaling
+ rotation b a 1
+ translation Y
0 0 1
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2D Transformations with homogeneous coordinates

No change Translate Scale about origin
1 0|0 1 0(X WO O

|O 110 |O 1Y OHO
) \ |

. 10,1) (0, H)

00 1,9 & Y>

Rotate about origin Shearin x direction ~ Sheariny direction
cosO -sinB 0 1 tand O 1 00
sin@ cosB 0 0o 1 O tanp 1 0O

(—sin 6,

COS 0) A%\ , *(tan $, 1) 0,1)
{(cos 6, |
9  sin 6) ¢.,O) ........ (1,tany)

.......... il

: 1 . ol ¥ 1

Figure: Wikipedia
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Affine transformation = similarity + no restrictions on scaling

Properties of affine transformations: X'l [a b c]
» arbitrary 6 Degrees Of Freedom yii=|d e f||y
* lines map to lines w00 Tjw
 parallel lines map to parallel lines
* ratios are preserved

—
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Projective transformation (homography)

Properties of projective transformations: ‘X'1 [a b c1lx
* 8 degrees of freedom y'|=|d e [f||ly
* lines map to lines _W'_ & h i 144
e parallel lines do not necessarily map to parallel lines
* ratios are not necessarily preserved

—
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Composing Transformations

% ransformations = Matrices => Composition by Multiplication!
p' = RR,Sp
In the example above, the result is equivalent to
p' = R2(R1(Sp))
Equivalent to multiply the matrices into single transformation matrix:
p' = (R2RS)p

Order Matters! Transformations from right to left.
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Scaling & Translating != Translating & Scaling

® 1 0 ¢t,][s, 0 O]px s, 0 t,]rX (S, X Ty
p'=TSp=(0 1 t,|10 s, O|[y[=|0 s, ¢ [y =15,y t ity
0 0 11to o0 1141 0 0 1111 1
s, 0 0111 0 ¢,rx s, 0 s.t.]1rX (S, X + Syt ]
p""'=STp=1|0 sy, 010 1 ¢ y] =0 s, sy, ly = [s,¥ + 5,8,
0 0 1ilo 0 1141 0 0 1 111 1
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Scaling + Rotation + Translation

=(TRS)p

10t

p' =TRSp = [
0 0 1

sm 6 cos 6

cos O
] [sm 6

cos@ —siné tH 0 O

28 -

[RS t]

cosH 0 Sy 0

—sin @ OH 0O O
0O 0 1

q

X

y

1 This is the form of the
general-purpose

\ transformation matrix

Ranjay Krishna, Jieyu Zhang
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3D Transforms = Matrix Multiplication

Transformation Matrix #DoF Preserves Icon
translation [I t} 3 orientation
3x4
rigid (Euclidean) [R t] ) 6 lengths O
3 X
similarity [SR t] 7 angles Q
3x4
affine [A} 12 parallelism E
3x4
projective [I:I} 15 straight lines E‘
4x4

Table 2.2  Hierarchy of 3D coordinate transformations. Each transformation also pre-

serves the properties listed in the rows below it, i.e., similarity preserves not only angles but

also parallelism and straight lines. The 3 x 4 matrices are extended with a fourth [0T 1]

row to form a full 4 x 4 matrix for homogeneous coordinate transformations. The mnemonic

icons are drawn in 2D but are meant to suggest transformations occurring in a full 3D cube.

Lecture 12 - 60
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Today's agenda

e Pinhole camera

Reference: Szeliski 2.1, 2.2.3, 7.4
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Reminder: Camera Obscura

century BC: principles of pinhole camera, a.k.a. camera obscura

China: 5th century BC

o}

O  Greece: 4th century BC
O Egypt: 11th century

O

Throughout Europe: from 11th century onwards

First mention ... First camera?

Solis &@u[m Ao Christi 1544
Die¢ 24 gg‘mvmr_ij Lopaniy ~ ’

o
SEX ;A ?

Chinese philosopher Mozi
(470 to 390 BC)

Greek philosopher Aristotle
(384 to 322 BC)
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Pinhole imaging

_ barrier (diaphragm)
image plane
pinhole
g (aperture)
digital sensor § L real-world
(CCDor F object
CMOS) [ /
1 camera center
H (center of
: projection)
< >

focal length f
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Pinhole imaging

digital sensor ) real-world
(CCD or object
CMOS)
What does the
image on the Each scene point contributes to only one sensor pixel

sensor look like?
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Pinhole imaging

real-world
object

copy of real-world object
(inverted and scaled)
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Bare-sensor imaging (without a pinhole camera)

I~
1 ‘ TN
——==
digital sensor "’0 real-world

< i

(CCDor f < =S object

CMOS) f<—— >
i "
I l

What does the ’ .
image on the All scene points contribute to all sensor pixels

sensor look like?
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Bare-sensor imaging (without a pinhole camera)

All scene points contribute to all sensor pixels
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Cameras & Lenses

e Focal length determines the
magnification of the image projected

onto the image plane.
e Aperture determines the light intensity of

that image pixels.
Source wikipedia
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Beyond Pinholes: Radial Distortion

e Common in wide-angle lenses or for 4
special applications (e.g., automotive) ]

® Creates a projective transformation

e Usually handled throu%h solving for
non-linear terms and then correcting

image
b/
% % ?
I
! ! : |
1 ! I
ol A : lr>xo : : — X
! ! ' |
oy g,
No.Distortion Barre! Distortion R Dt Corrected Barrel Distortion
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Cameras & Lenses

I mm

Decreasing
aperture
size
LUz
OFTICA
What happens with a smaller rorenaans

0.15 mm 0.07 mm

aperture?
 Less light passes through
 Less diffraction effect and clearer image

Pinhole is the miniscule aperture, resulting in the
least amount of light and clearest image
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Today's agenda

e The Pinhole camera transformation

Reference: Szeliski 2.1, 2.2.3, 7.4
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Describing both lens and pinhole cameras

For this course, we focus on
the pinhole model.

e Similar to thin lens model in

Physics: central rays are not

deviated.

e Assumes lens camera in focus.
e Useful approximation but ignores

important lens distortions.
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The pinhole camera

image plane

real-world
object

< > camera
center

focal length f
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The (rearranged) pinhole camera

virtual image plane

real-world
object

camera < >
center focal length f
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The (rearranged) pinhole camera

XC image
plane
/ X
- /
camera 't"/l
center o~ z°
C y! .. :
/ principal axis
z=f prin;ipal
yC point

What is the transformation x = PX?
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Pinhole Camera Matrix

Because all transformations 40 y, X
are done using x = PX . 4/
homogeneous coordinate ~ | v center-g g I
system, all transformations Ax — PX . y
are correct up to some scale
lambda _ -

X - . X

P1 P2 P3 Pa v
Y|~ | P5 Ps Pr D8 7
7 P9 P10 P11 P12 1
coordinates camera matrix  world (ca?nera) coordinates

3x1 3x4 4x1
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image plane
Similar
Triangles:
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Pinhole Camera Matrix

Transformation from camera coordinates to image coordinates:

X Y Z2'=[fX/Z fy/Z]'

General camera model in homogeneous coordinates:

y

_x_

L7

P4
P8
P12

X
Y
Z
1

Pinhole camera has a much simpler projection matrix (assume only scaling):

P1 P2 P3
~| Ps De D7
P9 P10 P11
- f 0 0 0
0O f 0 O
0 0 1 0

X

fY
A

|

fX/Z
fY/Z

|

Reminder: conversion from
homogeneous coordinates

Ranjay Krishna, Jieyu Zhang
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Generalizing the camera matrix

In general, the camera and image have different coordinate systems.

X image plane .
3D point
| in camera
f( coordinates
- 2D point in image coordinates
| S p zC
Ocamera

Oim age
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Generalizing the camera matrix
In particular, the camera origin and image origin may be different:

' >
image coordinate |n|1age
system plane
) >

p .-~ camera coordinate system

Q. How does the camera matrix change?

f 0 0 O
P=|(0 f 0 O
0 0 1 0
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Generalizing the camera matrix
In particular, the camera origin and image origin may be different:

' >
image coordinate |n|1age
system plane
) >

p .-~ camera coordinate system

Q. How does the camera matrix change?

i f 0 D 0 ] Translate the
. camera origin to
P = 8 g Z?I_y 8 image origin
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Camera matrix decomposition

We can decompose the camera matrix like this:

f 0 pg 1
P=|0 f py 0
0O 0 1 0

o = O

—= O O
o O O
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Camera matrix decomposition

We can decompose the camera matrix like this:

f 0 p, 1 0 0:0
P=|0 f py O 1 O 0
00 1 [0 01 0 |
(homogeneous) transformation (homogeneous) perspective projection

from 2D to 2D, accounting for from 3D to 2D, assuming image plane at
focal length f and origin translation z =1 and shared camera/image origin
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Camera matrix decomposition

We can decompose the camera matrix like this:

f 0 ps 1 0 0:0
P=|0 f p, 0 1 0:0
00 1 [[00 1:0

/ \

(homogeneous) transformation (homogeneous) perspective projection
from 2D to 2D, accounting for from 3D to 2D, assuming image plane at
focal length f and origin translation z =1 and shared camera/image origin
f 0 pg
Also written as: P = K[I|O] where K = | 0 f p, |Kiscalledthe
0 0 1 camera intrinsics
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Generalizing the camera matrix

In general, there are 3 different coordinate systems (camera moves in the world).

w
X
A
C .
X Image plane SW 3D pOint
A ® in world coordinates
Oworld
e ® >
W
b . . Z
2D pointin coordinates
® p zC
Ocamera
Oimage
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World-to-camera coordinate transformation
Let's assume camera is at location C" in world coordinate system

J

Q. What is X*" in camera coordinate system? xW
C .4'
X Image Plane

PR

Camera I X
coordinate .x xW
system . C
— = Z
»C / ~~~~~~~
W
Coordinate of the World z
camera center in the W coordinate

world coordinate y system

frame

Note: heterogeneous coordinates for now
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World-to-camera coordinate transformation

Why aren’t the

points aligned? _.-~*

Image Plane iR

Camera
coordinate
system

y C
. . e W
e I World z
s conmem s coordinate
w
y system

XA7T XAT
vV v/
LA LA

—

translate
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World-to-camera coordinate transformation

,,,,,, ® X
A T  points how
Ve e
Camera o w coincide
coordinate X
system
C
y
w

World
coordinate
y w system

—_

rotate translate
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Coordinate system transformation

In heterogeneous coordinates, we have:

xC — R (x’%%ﬁ’_ C%%)

Q. How do we write this transformation in homogeneous coordinates?
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Coordinate system transformation

In heterogeneous coordinates, we have:

xC — R (x’%%f_ C“%‘%)

Q. How do we write this transformation in homogeneous coordinates?

Xe X,
Y. R -RC]| Y, _ W] o
Z. | — [ 0 1 ] 7 or X¢ = [R RC™ [gw
1 1 0 1
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Let's update our camera transformation

The previous camera transformation we calculated is for homogeneous 3D coordinates in

camera coordinate system:

(omitting ~ for simplicity: everything in homogeneous coordinates)

x'~ K[I|0]X¢

We also just derived:

Ranjay Krishna, Jieyu Zhang

Camera
coordinate
system

World
coordinate
yW system
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Putting it all together

R —RC

We can write everything into a single projection: X "’K[”O] [O 1

The camera matrix now looks like:

P=|0 f p, |[1 | 0] [5 _11“:]

001_¢ \

intrinsic parameters (3 x 3): / perspective projection (3 x 4):

extrinsic parameters (4 x 4):

correspond to camera maps 3D to 2D points correspond to camera
internals (image-to-image (camera-to-image externals (world-to-camera
transformation) transformation) transformation)
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Putting it all together

We can write everything into a single projection: X ~pPXW

The camera matrix now looks like:

t
f 0 py | A
P=|0 f p, ||R —RC]
0 0 1 '
intrinsic parameters (3 x 3): / \ extrinsic parameters (3 x 4):
correspond to camera internals correspond to camera externals
(sensor not at f = 1 and origin shift) (world-to-image transformation)
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General pinhole camera matrix

P = K[th where t = —RC
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General pinhole camera matrix

P = K[th where t = —RC

f 0 pg L T2 T3l
P=|0 f py T4 Ts Te: L2
i 0 O 1 1 L rr Tg Tog : t3 i
intrinsic extrinsic
parameters parameters
1 T T3 Ct
R = Ta Ts T6 t = t2
Ty T8 T9 t3
3D rotation 3D translation
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More general camera matrices

Non-square pixels, sensor may be skewed
(causing focal length to be different along x and y).

ay; S Dy :
P=| 0 o p, | [R —RC|
0 0 1 ;

Q. How many degrees of freedom?
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Many other types of cameras

// i j 1
(a) 3D view (b) orthography (c) scaled orthography (d) para-perspective

< | &

(e) perspective (f) object-centered
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Camera Models: Still an Active Area

Is everybody only using a 2400 years old model?

e More complex cameras: pinhole + distortion, fisheye

catadioptric, dashcams, underwater...

e The Double Sphere Camera Model, Usenko et al ECCV 2018

(commonly used in robotics, like in our ICRA22 paper)

e Learning Camera Models , = ¢

Neural Ray Surfaces,
Vasiljevic et al, 3DV 202C

(a) Pinhole (KITTI) (b) Catadioptric (OmniCam)
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https://arxiv.org/abs/1807.08957
https://sites.google.com/ttic.edu/self-sup-self-calib
https://arxiv.org/abs/2008.06630

Next time

Camera calibration
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